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Abstract	21	

	22	
Ensembles of numerical forecasts based on perturbed initial conditions have long been used to improve estimates of 23	
both weather and climate forecasts. The Goddard Earth Observing System (GEOS) Atmosphere-Ocean General 24	
Circulation Model, Version 5 (GEOS-5 AOGCM) Seasonal-to-Interannual Forecast System has been used routinely 25	
by the GMAO since 2008, the current version since 2012. A coupled reanalysis starting in 1980 provides the initial 26	
conditions for the 9-month experimental forecasts. Once a month, sea surface temperature from a suite of 11 27	
ensemble forecasts is contributed to the North American Multi-Model Ensemble (NMME) consensus project, which 28	
compares and distributes seasonal forecasts of ENSO events. Since June 2013, GEOS-5 forecasts of the Arctic sea-29	
ice distribution were provided to the Sea-Ice Outlook project. The seasonal forecast output data includes surface 30	
fields, atmospheric and ocean fields, as well as sea ice thickness and area, and soil moisture variables. The current 31	
paper aims to document the characteristics of the GEOS-5 seasonal forecast system and to highlight forecast biases 32	
and skills of selected variables (sea surface temperature, air temperature at 2 m, precipitation and sea ice extent) to 33	
be used as a benchmark for the future GMAO seasonal forecast systems and to facilitate comparison with other 34	
global seasonal forecast systems.	35	
 36	
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1 Introduction	39	
Deterministic numerical weather prediction forecasts have a forecasting window that is limited to about 15 days 40	
(e.g., Lorenz, 1963, 1993). As noted by Palmer and Anderson (1993, 1994) and others, useful predictability is 41	
possible beyond this limit in part because boundary forcing such as sea surface temperatures or soil moisture (Koster 42	
and Suarez, 2001) may vary slowly and reliably, and may then influence statistics of the atmosphere. In 2010, the 43	
US National Academies reported on the state of seasonal-to-interannual predictability, and suggested avenues for 44	
progress (Weller et al., 2010). Among the recommendations was the need to establish and evaluate a multi-model 45	
ensemble, which was recognized as a viable strategy for resolving forecast uncertainty (e.g., Kirtman et al., 2014). 46	
The NASA Global Modeling and Assimilation Office (GMAO) has participated in the North American Multimodel 47	
Ensemble (NMME; Kirtman et al., 2014) since its inception. The purpose of the NMME is to advance the 48	
capabilities of the climate prediction models, and utilize the system in a near-operational mode to demonstrate 49	
feasibility. The GMAO system is based on its use and experience with data assimilation methods that have been 50	
developed for mission support and to enhance NASA’s program of earth observations. The development and use of 51	
the seasonal forecasting system enhances the use of NASA data and contributes to observing system science by 52	
improving assimilation systems and atmosphere and ocean modeling tools. Evaluation of the GMAO system has 53	
previously been conducted with a focus on the predictability of the El Niño/Southern Oscillation phenomenon 54	
(ENSO; Ham et al., 2014; Vernieres et al., 2012). In this paper, we provide a more comprehensive assessment of 55	
current forecasting system as it reaches the end of its life cycle. As the system has now progressed through several 56	
years within the NMME near-operational mode, this paper critically examines recent performance.   57	

The layout of the paper is as follows. Section 2 provides an overview of the GMAO Goddard Earth Observing 58	
System (GEOS) Atmosphere-Ocean General Circulation Model, version 5 (GEOS-5 AOGCM) Seasonal Forecast 59	
System. Section 3 details the initialization procedure for each system component, and the means of ensemble 60	
generation through field perturbations and sampling in time. Section 4 presents an assessment of the forecast sea 61	
surface temperature (SST). Section 5 presents the bias and skills of the relevant atmospheric fields, including 2-m air 62	
temperature (T2M) and precipitation. Section 6 examines the prognostic sea ice cover. Conclusions are presented in 63	
section 7. 64	

2 Overview	of	the	GEOS-5	Seasonal	Forecast	System:	Model	65	

Components	66	
The GEOS-5 AOGCM has been developed to simulate climate variability on a wide range of time scales, from 67	
synoptic time scales to multi-century climate change, and has been tested in coupled simulations and in data 68	
assimilation mode. The ocean and atmosphere exchange fluxes of momentum, heat and freshwater through a “skin 69	
layer” interface which includes parameterization of the diurnal cycle and a sea ice model. All components are 70	
coupled together using the Earth System Modeling Framework (ESMF, Hill et al. 2004). The goal in having a multi-71	
scale modeling system with its different components communicating through a unified interface (ESMF) is to be 72	
able to propagate improvements made to a physical process in one component to the other components smoothly and 73	
efficiently. The GEOS-5 AOGCM was configured to participate in the Coupled Model Intercomparison Project 74	
phase 5 (CMIP5), which provides a standard protocol for evaluation of coupled GCMs. To evaluate the model's 75	
ability to simulate the Earth's climate, it was validated against observational data and reanalysis products. 76	

2.1 Atmospheric	Component	77	
The atmospheric component of the GEOS-5 AOGCM is Fortuna-2.5, the same that was used for the Modern-Era 78	
Retrospective Analysis for Research and Applications (MERRA; Rienecker et al. 2011), but with adjusted 79	
parameterization of moist processes and turbulence (Molod et al. 2012). The model has a finite volume dynamical 80	
core (Lin 2004), which is integrated with various physical packages through the ESMF.  81	
The physics package includes parameterization of moist processes, radiation, turbulent mixing and surface fluxes. 82	
The moist component contains parameterization of convection using the Relaxed Arakawa-Schubert scheme 83	
(Moorthi and Suarez 1992), and the large-scale precipitation and cloud cover model as described in Bacmeister et al. 84	



(2006). The radiation component includes parameterization for long wave (Chou 1990, 1992) and short wave 85	
radiation processes (Chou et al 1994). The turbulence component consists of parameterization for vertical 86	
diffusivity, the planetary boundary layer and gravity wave drag. The free atmospheric turbulent diffusivities are 87	
based on the gradient Richardson number. The parameterization of the boundary layer is based on Lock et al. (2000) 88	
scheme, acting together with scheme of Louis and Geleyn (1982). The Lock et al. (2000) scheme includes a 89	
representation of non-local mixing (driven by both surface fluxes and cloud-top processes) in unstable layers, either 90	
coupled to or decoupled from the surface, and an explicit entrainment parameterization. The original scheme was 91	
extended in GEOS-5 to include moist heating and entrainment in the unstable surface parcel calculations. GEOS-5 92	
incorporates two gravity wave drag parameterizations, an orographic gravity wave drag formulation based on 93	
McFarlane (1987), and a formulation for non-orographic waves based on Garcia and Boville (1994). The surface 94	
exchange of heat, moisture and momentum between the atmosphere and land, ocean or sea ice surfaces are treated 95	
with a bulk exchange formulation based on Monin-Obukhov similarity theory.	96	
The atmospheric model uses a Cartesian grid with a 1° × 1.25° horizontal resolution and 72 hybrid vertical levels 97	
with the upper most level at 0.01 hPa.	98	

2.2 Ocean	Component	99	
The ocean component of the GEOS-5 AOGCM is the Modular Ocean Model version 4 (MOM4) developed at 100	
Geophysical Fluid Dynamics Laboratory (Griffies 2012). It is a non-Boussinesq, hydrostatic, primitive equations 101	
model with a staggered Arakawa B-grid or C-grid and generalized level (vertical) coordinate based on depth or 102	
pressure. A tripolar grid is used to resolve the Arctic Ocean without polar filtering (Murray, 1996). The nominal 103	
resolution of the ocean grid is ½°, with a meridional equatorial refinement to ¼°. It is a regular Cartesian grid south 104	
of 65°N, and curvilinear north of 65°N, with two poles located on land to eliminate the problem of vanishing cell 105	
area at the geographic North Pole. The resulting tripolar grid has a minimum and maximum resolution of 15 km and 106	
52 km, respectively.. The ocean topography is derived from the ETOPO5 data set (Smith and Sandwell 1997).The 107	
topography is represented as a partial bottom step to better represent topographically influenced advective and wave 108	
processes. Vertical mixing follows non-local K-profile parameterization of Large et al. (1994) and includes 109	
parameterizations of tidal mixing on continental shelves (Lee et al. 2006) as well as breaking internal gravity waves 110	
(Simmons et al. 2004). Mesoscale eddy transport uses the method developed by Ferrari et al. (2010), modifying the 111	
isoneutral method developed by Gent and McWilliams (1990). The restratification effect of submesoscale eddies 112	
uses the theory developed by Fox-Kemper et al. (2008) and implementation by Fox-Kemper et al. (2011).The 113	
horizontal viscosity uses the anisotropic scheme of Large et al. (2001) for better representation of equatorial 114	
currents. The exchange with marginal sea is parameterized under coarse resolution as discussed in Griffies et al 115	
(2004). 116	

2.3 Sea	Ice	Component	117	
The sea ice component of the GEOS-5 AOGCM is the Community Ice CodE, version 4 (CICE; Bailey et al. 118	
2010,Hunke 2008) developed at Los Alamos National Laboratory. The model includes several interacting 119	
components to allow for semi-implicit coupling between the atmosphere and ice surface: a thermodynamic model 120	
that computes local growth rates of snow and ice due to vertical conductive, radiative and turbulent fluxes, along 121	
with snowfall; a model of ice dynamics, which predicts the velocity field of the ice pack based on a model of the 122	
material strength of the ice; a transport model that describes advection of the area concentration, ice volumes and 123	
other state variables; and a ridging parameterization that transfers ice among thickness categories based on energetic 124	
balances and rates of strain. A skin layer interface is used for the exchange of basal heat, salt, and freshwater fluxes 125	
with the underlying MOM4 ocean model; ice pressure is not exerted on the ocean. The CICE model is configured 126	
with standard settings but without the use of melt ponds. 	127	

2.4 Land	Component	128	
The land surface model in the GEOS-5 AOGCM is a catchment-based hydrological model described in Koster et al. 129	
(2000). In this model, subgrid heterogeneity in surface moisture state is treated statistically. The applied subgrid 130	
scale distributions are related to the topography, which exerts a major control over much of the subgrid variability. 131	
The catchment model is coupled to the multi-layer snow model described in Stieglitz et al. (2001). 132	



3 Overview	of	the	GEOS-5	Seasonal	Forecast	System:	Initial	State	133	

Generation	134	

3.1 Atmosphere	Initialization	135	
In the coupled model initialization, selected atmospheric variables are constrained with the Modern-Era 136	
Retrospective Analysis for Research and Application (MERRA; Rienecker et al. 2011). These variables include 137	
surface pressure, pressure thickness, zonal and meridional winds, specific humidity, ozone concentration, and 138	
potential temperature.	139	

3.2 Ocean	and	Sea-Ice	Initialization	140	
The Goddard Earth Observing System integrated Ocean Data Assimilation System (GEOS-iODAS) is used for both 141	
ocean state and sea ice initialization for the production of analysis products (MERRA-Ocean). The ocean and sea-ice 142	
initialization methodology is described in detail in Vernieres et. al. (2012) and Keppenne et al. (2008). An overview 143	
of the initialization procedure relevant to the hindcasts is presented here. 144	
The assimilated observing system consists of: 145	

• sea surface temperature observations from CMIP5 (Hurrell et al. 2008) prior to 1982 and Reynolds 146	
(Reynolds et al. 2007) from 1982 to present; 147	

• temperature and salinity profiles from eXpendable Bathythermographs (XBTs) and Conductivity 148	
Temperature Depth (CTD) sensors extracted from the EN3 data base (Ingleby and Huddleston 2007) with 149	
time-varying XBT corrections applied according to Levitus et al. (2009), the tropical moored buoy array 150	
(McPhaden et al. 2010) - TAO/TRITON, PIRATA, and RAMA arrays and Argo floats, with profiles from 151	
the Argo Global Data Assembly Center (GDAC); 152	

• sea ice concentration from the National Snow and Ice Data Center (NSIDC). 153	
The NSIDC sea-ice concentrations product is based on passive microwave observations of ice concentration from 154	
the Nimbus-7 Scanning Multi-channel Microwave Radiometer (SMMR) and the Defense Meteorological Satellite 155	
Program (DMSP) Special Scanning Microwave Imager (SSM/I) and Special Scanning Microwave Imager/Sounder 156	
(SSMIS). It has a 25 km spatial resolution for both the north and south polar regions. Temporal resolution is every 157	
other day from October 1978 to July 1987 (SMMR), then daily from August 1987 to present (SSM/I, SSMIS). Ice 158	
concentrations from CMIP5 and Reynolds are used in areas that are not measured due to orbit inclination (poleward 159	
of 87.2° for SSM/I and 84.5° for SMMR). 160	
The above observations are assimilated using an ensemble optimal interpolation technique (Oke et al. 2010, Wan et 161	
al. 2010) with 5-day window from 1979 to present.  The model is also weakly constrained to the World Ocean Atlas 162	
2009 (WOA09) gridded climatology (Antonov et al. 2010; Locarnini et al. 2010) of T(z) and S(z) at 1° degree 163	
resolution and from 0 to 4500m and of Sea surface salinity (SSS) to correct some of the model's biases, particularly 164	
prior to the Argo era.	165	
The resulting analysis (MERRA-Ocean) has been extensively diagnosed through The Ocean Reanalyses 166	
Intercomparison Project (Balmaseda et al. 2015) in terms of various parameters such as mixed-layer depth, 167	
thermocline depth, heat and salinity content, overturning circulation, etc. 168	

3.3 Land	169	
An important aspect of the GEOS-5 initialization concerns the treatment of the land. Observed precipitation data are 170	
used to construct a corrected version of the hourly MERRA (or GEOS-5 forward processing) precipitation fields, 171	
which are then used to force the land surface and generate enhanced soil moisture initial conditions for initializing 172	
the GEOS-5 seasonal forecasts. The corrections to the precipitation are obtained using the Global Precipitation 173	
Climatology Project version 2.1(GPCPv2.1, provided by the NASA/Goddard Space Flight Center's Laboratory for 174	
Atmospheres, which develops and computes the dataset as a contribution to the GEWEX Global Precipitation 175	
Climatology Project) and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP, provided by 176	
the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/) pentad 177	
precipitation data following Reichle et al. (2011). As the first step, the CMAP dataset is rescaled to match the 178	
(seasonally variable) long-term climatology of the GPCP. During the second step, hourly MERRA total precipitation 179	
is time averaged and re-gridded to the scale of the correcting CMAP dataset (i.e., to pentad and 2.5° resolution). 180	
Next, separately for each pentad of each year and for each 2.5° grid cell, a scaling factor is computed by determining 181	



the ratio of the (climatologically adjusted) CMAP estimate to the MERRA data (i.e., on the grid and at the time scale 182	
of the correcting observations). Finally, these scaling factors are re-gridded back to the MERRA grid and a scaling 183	
factor derived for a given grid cell and year/pentad is applied to the MERRA precipitation rates (large-scale 184	
precipitation, convective precipitation, and snowfall separately) in each of the 120 hourly time steps within that 185	
pentad. By construction, the corrected MERRA precipitation is nearly identical to the CMAP estimates at the pentad 186	
and 2.5° resolution. The diurnal cycle, the frequency and relative intensity of rainfall events at the sub-pentad scale, 187	
and the sub-2.5° spatial variations are entirely based on MERRA estimates.	188	

3.4 Sampling	in	Time	189	
Each month, the GMAO produces an ensemble of 12 (13 in November) real-time GEOS-5 coupled model forecasts. 190	
The ensemble is produced by initializing the model every five days (table 1) prior to the start of the month, except 191	
for the date closest to the start of the month when additional GEOS-5 forecasts are generated by various	192	
perturbation methods (tables 2 and 3). The perturbations are produced using a breeding approach (perturbing the 193	
atmosphere and/or ocean), and a simple scaled differencing approach involving nearby (in time) atmosphere and 194	
ocean states. We note that due to time constraints only 11 ensemble members are delivered to the (North American 195	
Multi-Model Ensemble (NMME) project (forecasts are due by the 8th of the month). 196	
In addition to the forecasts, the GMAO produced a suite of hindcasts (1982-2012) used to calibrate/bias correct the 197	
forecasts and assess forecast skill. The ensemble members for the hindcasts are produced in the same way as for the 198	
forecasts and span the period 1982-2012. 199	
Table	1	Seasonal	Forecast	Schedule	200	

Seasonal Forecast Schedule 
Jan Feb Mar Apr May Jun 

12 12 1 11 2 10 3 12 4 11 5 11 
12 17 1 16 2 15 3 17 4 16 5 16 
12 22 1 21 2 20 3 22 4 21 5 21 
12 27 1 26 2 25 3 27 4 26 5 26 
1 1 1 31 3 2 4 1 5 1 5 31 
1 6 2 5 3 7 4 6 5 6 6 5 

Jul Aug Sep Oct Nov Dec 
6 10 7 10 8 9 9 8 10 8 11 12 
6 15 7 15 8 14 9 13 10 13 11 17 
6 20 7 20 8 19 9 18 10 18 11 22 
6 25 7 25 8 24 9 23 10 23 11 27 
6 30 7 30 8 29 9 28 10 28 12 2 
7 5 8 4 9 3 10 3 11 2 12 7 
        11 7   
Table 1 shows the start dates for the ensemble members of the GMAO Seasonal forecasts and hindcasts. The bold 201	
shaded values denote the closest dates to the start of the month for which additional ensemble members are 202	
generated using various perturbation methods.	203	

3.5 Perturbations	204	
Ensembles of numerical forecasts based on perturbed initial conditions have long been used to improve estimates of 205	
both weather and climate forecasts. The GEOS-5 seasonal forecast is arranged so that it uses a set of 7 members for 206	
the forecast initialized on the day closest to the beginning of the month, and one member otherwise for a combined 207	
ensemble of 11 members. Initial perturbation method, that adds small perturbation to analysis initial conditions, is 208	
used to generate the ensemble forecast. Since one goal has been the use of the ensemble spread as an indicator of 209	
expected forecast skill, bred vectors (Toth and Kalnay, 1993) have been used as perturbations to capture the fastest 210	
growing modes on weather time scales. More recently, the coupled breeding method was developed for coupled 211	
atmosphere ocean systems to capture the dominant mode of coupled instabilities associated with the El 212	
Niño/Southern Oscillation (ENSO) (Cai et al. 2003; Yang et al. 2006, 2008; Ham et al. 2012).	213	
The breeding is applied from 1980 with the aim of capturing the fastest-growing errors in the seasonal forecasts. 214	
Two-sided breeding is applied, which means positive and negative bred runs are restarted every month by adding 215	



and subtracting the bred vector to the initial conditions generated from the Ensemble Optimal Interpolation (EnOI) 216	
option of the GEOS ocean data assimilation system, forced with NASA’s Modern-Era Retrospective analysis for 217	
Research and Applications (MERRA) (Rienecker et al. 2011).	218	
The rescaling interval chosen for the breeding is 30 days. The rescaling norm is the RMS difference of the 219	
instantaneous sea surface temperatures (SSTs) from the positive and negative bred runs; the region for defining the 220	
norm is the tropical Pacific domain over 120οE-90οW, and 10οS-10οN. At every re-initialization during the breeding 221	
cycle, perturbations are re-scaled so that the magnitude of the norm is reduced to 10% of the natural variability of 222	
SST over the norm region (i.e. 0.48οC). Another method to perturb initial conditions is based on the GEOS-5 223	
analysis on two different days. Similar to breeding, the perturbations are re-scaled and the magnitude of the norm is 224	
reduced to 10% of the natural variability of SST over the norm region (i.e. 0.48οC). A combination of these two 225	
methods is used in generating the ensemble members for the seasonal forecast. 	226	
Tables 2, 3 and 4 illustrate the perturbations of the initial conditions for all ensemble members generated at 227	
the beginning of the month that are submitted to NMME.  Additional ensemble members utilize satellite 228	
altimetry data, which do not cover the full NMME hindcast period.	Table	2	Ensemble	members’	perturbation	229	
combinations	230	

Initial conditions (IC) perturbations 
Ensemble 

member 
 
IC type 

1 2 3 4 5 6 7 

Ocean O O B- O B+ O I- O I+ O O B+ 
Atmosphere A A B- A B+ A I- A I+ A I- A 
Table	3	Format	of	IC	perturbations	231	

Ensemble member Perturbation type 
1 ocean and atmosphere IC are not perturbed 
2 ocean and atmosphere IC are perturbed using negative bred vectors 
3 ocean and atmosphere IC are perturbed using positive bred vectors 
4 ocean and atmosphere IC are perturbed using negative rescaled difference between two 

analyses 
5 ocean and atmosphere IC are perturbed using positive rescaled difference between two 

analyses 
6 atmosphere IC are perturbed using negative rescaled difference between two analyses 
7 ocean IC are perturbed using positive bred vectors 

Table	4	List	of	perturbed	variables	232	

Perturbed variables 
ocean model grid temperature and salinity 

ocean velocities 
surface temperature, salinity and velocities 
sea level and frazil 
ice velocity and strain rate components 
ice strength, extent and stress tensor components 

atmosphere model grid wind components 
potential temperature 
surface pressure 
specific humidity 

skin layer tiles skin temperature, salinity and depth 

4 Forecast	Skill:	SST	233	



The forecast accuracy of the coupled model forecasts is assessed by the amplitude and phase of SST anomaly 234	
measured for specified regions and by the global patterns of SST. The forecast accuracy of the atmosphere-land 235	
forecasts will be assessed by the patterns and amplitude of the precipitation and surface temperature anomalies. For 236	
the arctic sea ice forecasts evaluation, the sea ice extent is compared with observations and against other similar 237	
systems participating in the Ice Outlook project.	238	
Fig1 depicts the regions that are used to compute the SST indices routinely used to assess the forecast skills. Other 239	
regions of interest, used for the case studies of the 2m air temperature and precipitation, are also shown.	240	

	241	
Fig	1Regions	used	in	SST	forecast	skill	assessment	are	shown	by	the	colored,	blue	and	green,	annotated	rectangles,	Niño	3.4	242	
region	is	hatched.	The	three	regions	shown	by	pink	rectangles	are	used	in	the	2m	air	temperature	and	precipitation	evaluation	243	

In the equatorial Pacific Ocean the easternmost Niño 1+2 region boundaries are0°-10°S, 90°W-80°W, the eastern 244	
Niño 3 region boundaries are 5°N-5°S, 150°W-90°W, the central Niño 3.4 region boundaries are 5°N-5°S, 170°W-245	
120°W and the western Niño 4 region boundaries are 5°N-5°S, 160°E-150°W.  In the Indian Ocean the Western 246	
Tropical Indian Ocean (WTIO) SST anomaly index is calculated in the box 50°E - 70°E, 10°S - 10°N, the 247	
Southeastern Tropical Indian Ocean (SETIO) SST anomaly index is calculated in the box 90°E - 110°E, 10°S - 0°; 248	
the Dipole Mode Index (DMI) is calculated as the difference of the WTIO and SETIO indices(Saji et al. 1999). The 249	
Tropical Atlantic SST Index (TASI) is defined as the differences between the North Atlantic Tropical (NAT) and the 250	
South Atlantic Tropical (SAT) SST indices, computed in the boxes 40°W - 20°W, 5°N - 20°N and15°W - 5°E, 20°S 251	
- 5°S respectively (Chang et al. 1997) 252	

4.1 Forecast	Drift	253	
Forecast drift is an artifact of the imperfect models.  For the seasonal forecast it is necessary to properly account for 254	
the drift and calibrate the forecast accordingly.  A continuous coupled analysis and a complete set of retrospective 255	
forecasts for the entire training period are required to consistently de-trend the forecast. In GEOS-5 system the drift 256	
is calculated as the average of these hindcasts from 1981-2010 for every ensemble member. It is subsequently 257	
subtracted from the production forecasts. This method of drift removal follows the convention established by 258	
Stockdale (1997) and others. The forecast bias characteristics are also important to understand for evaluating the 259	
performance of the current and the future seasonal-to-interannual forecast systems. Comparison of the retrospective 260	
forecasts to the observations is helpful in determining the model’s skill. 261	

4.1.1 Global	Bias	262	
Fig 2 shows the global forecast drift from Reynolds SST Climatology for December. Nine panels (top to bottom, left 263	
to right) correspond to initial conditions 1 month prior to December, 2 months prior and so on, the last panel shows 264	
the forecast for December initialized in April.  This is the average drift of all the ensemble members. Immediately 265	
one can see from the first panel the cold bias appearing during the first month of the forecast in the northwestern 266	
Atlantic ocean where subpolar surface water displaces the warm, salty water of the North Atlantic Current(Large 267	
and Danabasoglu 2006) and off the east coast of South America at the confluence of the Brazil current and the 268	
Antarctic Circumpolar Current exiting Drake Passage. Just as quickly the warm biases develop in the coastal areas 269	
off the west coasts of South America and southern Africa and off the east coasts of Asia and North America. The 270	
biases described above are present in all the forecast regardless of the initialization time. The coupled model exhibits 271	
a cooling trend in the equatorial Pacific Ocean and in the Southern Ocean, but it takes about 4 to 5 months for the 272	



large scale SST biases in these regions to reach their maximum value of about 3°C (see panels in the middle row of 273	
Fig 2, the December forecasts initialized in August and July). There is a cold bias in the southeastern tropical part of 274	
every of the three major ocean basins (Indian, Pacific, Atlantic) developing over the same time period.275	

	276	
Fig	2Monthly	mean	SST	forecast	drift	with	respect	to	Reynolds	climatology	for	December	for	every	forecast	lead	time,	i.e.	277	
December	forecast	initialized	at	the	beginning	of	December	(lead	1),	at	the	beginning	of	November	(lead	2),	up	to	the	278	
December	forecast	initialized	in	April	(lead	9)	279	

Fig 3 shows the model drift for every forecast for the last (lead 9) month, when the amplitude of the drift is expected 280	
to be the largest. The top left panel on this figure would contain the lead 9 drift of the December forecast (initialized 281	
in April, shown on the bottom-right panel of the Fig 2, thus omitted here). The order of panels is schematically listed 282	
in its place: predicted month first and next to it in parenthesis the initialization month. Thus the top row shows the 283	
model bias for winter (initialized in Apr-Jun), the second row shows the bias for spring (initialized in Jul-Sep), etc.  284	
The model climatology is colder than Reynolds along the equator in the Pacific Ocean during all seasons, but 285	
especially so in the fall and winter (initialized in Jan-Mar). The southeastern tropical Pacific and southeastern 286	
tropical Atlantic cold biases are also present throughout the year, but more pronounced in the boreal winter (Dec-287	
Mar) season (initialized in Mar-Jul).   In the Indian Ocean, the cold bias in the tropical southeastern part and along 288	
the equator and concurrent warm bias off the western Australia coast is present only during Dec-Mar (initialized in 289	
Apr-Jul). 290	
The SST bias in the northern Pacific Ocean has the strongest seasonality: there is a dipole structure with warm mid 291	
latitudes and cold tropics in Jul-Sep (initialized in Nov-Jan) with the differences between the model and observed 292	
climatologies as large as +3°C and -2°C.  At the same time a similar pattern of warm mid latitudes/cold tropics bias 293	
appears in the Atlantic ocean, but the magnitude of the bias is smaller, with warm bias about 1°C and cold about 294	



2°C.295	

	296	
Fig	3Lead	9	monthly	mean	Forecast	SST	forecast	bias	with	respect	to	Reynolds	climatology	for	Jan-Nov	predicted	months;	the	297	
month	when	the	forecast	was	initialized	is	shown	in	parenthesis;	lead	9	shown	(the	order	of	panels	is	shown	in	the	place	of	298	
Dec(Apr)	predicted(initialized)	month)	299	

4.1.2 ENSO,	IDM	and	TASI	SST	indices	300	
Fig 4 shows the mean ensemble bias for the Pacific Ocean Niño 3, Niño 4, Niño 3.4 and Niño 1+2 indices, WTIO, 301	
SETIO, IDM and TASI computed with respect to Reynolds SST. In the western and central equatorial Pacific Ocean 302	
(Niño 4, Niño 3.4) the model has an exaggerated seasonal cycle with a cold bias of up to 2οC in the boreal fall and 303	
winter for all forecasts targeting this time period.  The fastest drift away from the observations appears in the 304	
forecasts initialized in summer (July, August).  The forecasts initialized in winter and early spring (Jan-Mar) tend to 305	
stay close to the observations until the onset of summer. In the easternmost Pacific Ocean (Niño 1+2 region) the 306	
model is biased warm up to 2οC throughout the year with the exception of winter target months, when all forecasts 307	
return close to the observations. The Niño 3 region has the smallest bias and the most accurate seasonal cycle 308	
represented by the model. In the Indian Ocean the model in general is less biased: the warm bias is slightly larger in 309	
the east than in the west, thus the IDM (Indian Ocean dipole mode index) is slightly biased towards negative values 310	
during the summer and fall. The Tropical Atlantic SST Index (TASI)– the difference between the northern and the 311	



southern Atlantic ocean control regions (refer to Fig 1 for their definition) – is negatively biased by approximately 312	
1οC throughout the year, underestimating the absolute value of the gradient between the north and the south index 313	
poles in the summer and fall, and overestimating it in the spring. 314	

	315	
Fig	4Monthly	mean	SST	forecast	drift	with	respect	to	Reynolds	for	equatorial	Pacific,	Indian	and	Atlantic	Ocean	indices	316	

4.2 Forecast	Skill	317	
Similarly to the forecast drift discussion, the SST global skill maps are presented first, followed by the analysis of 318	
the regional indices. Anomaly Correlation Coefficient (ACC) is used as a measure of potential skill and Mean 319	
Square Skill Score (MSSS) as a measure of actual skill. MSSS is computed with respect to climatology, i.e. zero 320	
anomaly case, as follows, 321	
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Here 𝑇!"#$ 𝑖  is the temperature anomaly of the i-th hindcast and 𝑇!"#$ 𝑖 ≡ 0.	322	

4.2.1 Global	Anomaly	Correlation	Skill	323	
Fig 5 shows the global SST ACC computed for all forecast from all initializations months combined, with each 324	
panel representing the lead months. Lead month 1 has high correlation (above 0.8) with Reynolds SST in all the 325	
ocean basins. By lead months 2 and 3, the high correlation remains only in the tropical Pacific and Atlantic oceans. 326	
The Atlantic Ocean skill drops below 0.6 by lead month 6, but still remains high in the north Atlantic Iceland Basin 327	
region. Only in a portion of the Equatorial Pacific (Niño 3.4 region) ACC remains above 0.6 by lead month 9. From 328	
the significance point of view, the skill across equatorial regions in all oceans and in the north Atlantic Iceland Basin 329	
region remains viable until the final months of the forecast.	330	

	331	
Fig	5Global	monthly	SST	ACC	for	all	forecast	initial	months	combined	together;	Reynolds	monthly	SST	is	used	as	observations;	332	
nine	lead	months	are	shown	top-to-bottom,	left-to-right.		Pearson	correlation	significance	test	is	applied	with	p_value	at	0.01	333	
(Pearson	1896)	334	

4.2.2 Oceanic	Indices	Skill	335	
Figure 6 and 7 show the Hovmöller diagrams of SST ACC and MSSS vs. the forecast initialization month for 336	
various SST indices. These illustrate the seasonal variability of the forecast skill. The drift period computed for the 337	
anomalies is 1993-2010 and the period used for the skill computation is 1993-2014.	This period overlaps with the 338	
ensemble members that use the altimeter data.  For the ACC, a Pearson correlation significance test with p-value at 339	
0.01 is applied. 340	
 341	



Top left panels in figure 6 show ACC of the western (Niño 4) the eastern (Niño 3) equatorial Pacific indices. 342	
Overall, albeit significant, the ACC is lower in the Niño 4 region for most of the spring and especially summer start 343	
months. In the Niño 3 region the ACC is very high (>0.8) for Jun-Sep start months, which coincides with the 344	
amplitude growth phase of El Niño/La Niña. In the Niño 4 region the highest ACC is attained during the late fall and 345	
winter forecasts, i.e. when an El Niño/La Niña is at its peak and begins to wind down. In the central Pacific Ocean 346	
(Niño 3.4 region, top row second from the right panel in Figure 6), the anomaly correlation skill is robustly high 347	
(>0.7) for February to September start months throughout the 9 month forecast.  ACC drops sharply beyond May in 348	
Niño 3 and Niño 3.4 regions for most forecast started in September-January, which is an indication of the spring 349	
predictability barrier. In the Niño 4 region the spring barrier is not as pronounced, with the significant anomaly 350	
correlation skill retained through June for all forecasts initialized in late autumn and winter months (Oct-Feb). The 351	
relatively abrupt drop in ACC for forecasts starting in Jun-Aug maybe related to the rapid model drift during the first 352	
lead months for these forecasts.  In the Niño 1+2 region (top right most panel in Figure 6), ACC spring predictability 353	
barrier occurs earlier than in the equatorial regions, in March, with the skill dropping below significance level after 354	
two months in January and December, and 3 months in February forecasts. The best seasons in forecasting this area 355	
are late spring and early summer.	356	
SST forecast skill in the Indian Ocean is characterized by the presence of its own predictability barrier. This drop in 357	
the prediction skill occurs at the onset of the boreal summer monsoon and is found at both IDM poles (Waisowicz 358	
2007). ACC skill is high beyond the first month only for the WTIO forecasts initialized in Jan-Feb and SETIO 359	
forecasts initialized in Jul-Aug. In the SETIO ACC there is a second predictability barrier is December, but the skill 360	
apparently returns later for the forecasts starting in Jul-Sep (left bottom panels in Figure 6).The IDM index defined 361	
as the difference between WTIO and SETIO indices. Forecasting the relative variability of the two regions in each 362	
of which the skill is not very robust proves to be a difficult task, although some significant skill beyond the first 363	
month is observed in the forecasts initialized in May-Nov. Here the December predictability barrier hinted at by the 364	
SETIO ACC values is strongly evident.	365	
The TASI SST anomaly index is an indicator of the meridional surface temperature gradient in the tropical Atlantic 366	
Ocean. It was defined by Chang et al. (1997), where it was associated with a potential decadal 'dipole' mode of 367	
coupled variability in the tropical Atlantic. The GEOS-5 ability to predict the TASI values is robust but short lived: 368	
for all initialization months except Aug-Oct (and Feb-Mar), the ACC drops below the significance level after 2-3 369	
months (bottom right panel in Figure 6).The higher skill for these forecasts may be associated with the strength of 370	
the TASI signal: the amplitude of the index is peaking during these phases of the seasonal cycle (see the bottom 371	
right panel of Fig 4).  372	
 373	

	374	



Fig	 6	SST	ACC	for	all	oceanic	 indices.	 	The	Pearson	correlation	significance	test	with	p-value	at	0.01	 is	applied.	Forecast	start	375	
months	are	along	the	y-axis	and	lead	months	are	along	the	x-axis	376	
	377	

	378	
Fig	7	SST	MSSS	for	all	oceanic	indices.	Forecast	start	months	are	along	the	y-axis	and	forecast	lead	months	are	along	the	x-axis	379	
	380	
MSSS is a characteristic of how well the anomaly amplitude is forecasted.  Even when correlation skill is high, the 381	
systematic over/under-prediction of the anomaly would lead to a lower MSSS.  In equatorial Pacific Ocean indices 382	
MSSS becomes negative across the spring barrier.  In the Niño 4 region this can be related to an overextension of 383	
the warm pool to the west, and thus a consistent overestimation of the warm SST anomalies. Fig 1 of the Online 384	
Resource, showing the historic performance of the GEOS-5 Niño 4 index, illustrates this point: the El Niño 385	
amplitude was overestimated in 1982/83, 1991/92, 1997/98, 2002/03, 2006/07 and 2015/16 cases.  Additionally, and 386	
this is evident in all three equatorial indices, the system tends to falsely predict a warming trend(as opposed to the 387	
neutral condition in reality) for the following spring/summer for forecasts starting in boreal winter.  This contributes 388	
to the drop in anomaly correlation skill (spring barrier) and the low amplitude skill. 389	
For the Indian Ocean, while ACC/MSSS skills for the Western and Southeastern indices appear to be 390	
significant/positive for most of the forecasts, both skills for the IDM index are low except for the May-November 391	
starts, and even for these, the predictable lead time is 2-5 months.  This is comparable to other dynamic models (Shi 392	
et al 2012).  The Tropical Atlantic Ocean index skill shows forecast outperforming climatology in terms of error 393	
absolute value, as well as anomaly correlation, for the short term predictions (2-4 months).	394	

4.2.3 Case	Study:	Major	El	Niño	Event	of	15/16	395	
Figure8shows spaghetti plots of the ensemble mean forecasts for each start month for 2015-2016 (in color). 396	
Observations from Reynolds SST are shown by a solid black line, ocean analysis is shown by a dashed black line. 397	
The color scale represents the ratio between the forecast absolute departure from the observations and the standard 398	
deviation of the ensemble at that particular lead time. High values of this measure may be indicative of ensemble 399	
underdispersion. The 2015/2016 El Niño was considered a Central Pacific event so of all the indices, the Niño 4 400	
index in the Western Pacific exhibited the smallest observed anomaly compared to other Pacific Ocean indices and 401	
Niño 3.4 had the highest observed anomaly.GEOS-5 overpredicted the magnitude of the SST anomaly at the peak of 402	
the El Niño in the western central Pacific (Niño 4 index) by as much as 1.5oC.The timing was also missed by 403	
summer and fall (Jun-Nov, 2015) forecasts, they all showed the maximum in January 2016, while it occurred in Nov 404	
2015. So great was the forecasts departure from the observations, that the latter barely fit within the ensemble 405	
envelope in October, 2015 through January, 2016, the ensemble mean being as far from the observations as 4 406	
standard deviations of the ensemble. The maximum of the cooling phase was also overpredicted by more than 1oC, 407	



and the timing was too early: the winter and spring (Jan-Jun, 2016) forecasts showed the lowest temperature in 408	
August 2016, while in reality, the cooling gradually took place over the course of 2016. 409	
GEOS-5 accurately predicted surface warming in the Niño 3 region as early as March 2015.The following forecasts, 410	
starting in boreal summer (Jun-Aug, 2015), showed the warming being too early by about 2 months, however the 411	
timing of the peak SST anomaly in November 2015 - January 2016 was predicted well by all spring and summer 412	
forecasts except August 2015, which showed the peak in February 2016.This was also the warmest of all the 413	
predictions; the rest of the forecasts were within 0.5oC of observations, which corresponds to roughly one standard 414	
deviation of the ensemble. The amplitude of the cooling following the El Niño peak in this region was overpredicted 415	
by the forecasts initialized in April and May 2016 (they called for a moderate La Niña), while the rest of the 416	
forecasts, earlier (Jan-Mar, 2016) and later (June, 2016 onwards) predicted neutral conditions.	417	

418	
Fig	8Niño	4,	Niño	3,	Niño	3.4	and	Niño	1+2	monthly	mean	SST	forecasts;	the	solid	color	lines	show	the	ensemble	mean,	the	419	
black	line	is	observations	(Reynolds	SST),	the	dashed	black	line	is	the	ocean	analysis	from	which	the	initial	conditions	for	the	420	
forecasts	were	generated.		The	color	scale	represents	the	ratio	between	the	forecast	absolute	departure	from	the	observations	421	
and	the	standard	deviation	of	the	ensemble	at	that	particular	lead	time	422	

Note the peak of the 2015/2016 El Niño event that occurred in the NDJ season for the equatorial indices. The 423	
GEOS-5 model predicted the correct timing and magnitude of this peak for the Niño 3.4 index starting in February 424	
2015. This index is the one most widely used for ENSO forecasting, thus intercomparison between various models is 425	
readily available.  GEOS-5 model performs similarly to most other models involved in NMME, although more often 426	
than not, it tends to have stronger ENSO events than other models.  	427	
The Niño 1+2 region reached its peak anomaly in July 2015. The GMAO model predicted the timing of this event 428	
starting in March but underestimated the magnitude by 0.5oC. The June forecast was very close to the observations 429	
in timing and magnitude. In all regions, the forecast of the cooling phase of the ENSO starting inMay,2016 was 430	
exaggerated for all four indices.  By July, 2016, start time, the equatorial indices forecasts picked up the transition to 431	
the neutral conditions. 432	
Fig 9shows the evolution of the SST and the next figure (Fig 10) shows the equatorial subsurface temperature during 433	
the onset of the 2015/2016 El Niño. The overextension of the warm water anomaly to the west of the date line 434	
clearly shows the forecast difficulty in the Niño 4 region. It is consistent with lower skills in this area, as noted in 435	
Ham et al (2014b).The GEOS-5 system exhibited similar behavior during the previous ENSO events (1997/98 El 436	



Niño and 1982/83 El Niño, see Online Resource 1-6 illustrating the historic SST indices values in the GEOS-5 437	
forecasts).	438	

	439	
Fig	9	Evolution	of	the	equatorial	Pacific	Ocean	SST	during	the	onset	of	the	2015-16	El	Niño.	Left	panel	is	the	monthly	mean	440	
forecast	SST	from	May	2015	initial	conditions.	Right	panel	is	the	concurrent	MERRA	ocean	analysis	441	



	442	
Fig	10Evolution	of	the	subsurface	equatorial	Pacific	Ocean	temperature	during	the	onset	of	the	2015-16	El	Niño.	Left	panel	is	443	
the	forecast	monthly	mean	T	from	May	2015	initial	conditions.	Right	panel	is	the	concurrent	MERRA-ocean	analysis	444	

5 Forecast	Bias	and	Skill:	T2M	and	Precipitation	445	
Similarly to the SST, but for temperature at 2 meters (T2M) and precipitation, we first present the global forecast 446	
bias maps and then discuss the regional skills and case studies of two extreme events. 447	



5.1 Global	Bias	448	

	449	
Fig	11An	example	of	2m	air	temperature	seasonal	forecast	bias	for	1	and	3	months	lead	times.	Winter	and	summer	observed	450	
and	predicted	fields	are	shown	in	the	two	top	rows.	The	bottom	row	shows	the	differences	between	the	model	and	the	451	
observations	452	



	453	
Fig	12	An	example	of	precipitation	seasonal	forecast	bias	for	1	and	3	months	lead	times.	Winter	and	summer	observed	and	454	
predicted	field	are	shown	in	the	two	top	rows.	The	bottom	row	shows	the	differences	between	the	model	and	the	observations	455	

The bias shown in Figures 11-12is the systematic departure in predicted and observed climatology during the 30 456	
year (1982-2011) period. For both T2M and precipitation, MERRA-2 (Bosilovich 2016, Molod 2015) data was used 457	
as the observational validation reference. The first lead month and the third lead month bias for winter and summer 458	
are showed. The largest bias for T2M is over the winter Arctic Ocean and it increases with lead time. GEOS-5 459	
underestimates the sea ice temperature in winter. For the northern hemisphere summer, GEOS-5 tends to 460	
overestimate T2M over land, especially in Asia and the west coast of North America. Overall the bias for T2M 461	
remains small over the tropical oceans in all seasons over the full length of the forecast. The bias for precipitation 462	
varies slightly with lead time for both winter and summer. Larger bias is found in the summer than in the winter 463	
over land in the northern hemisphere. This is possibly due to the fact that summer precipitation over land is more 464	
likely to be affected by regional and local factors, thus uncertainty in model parameterization as vegetation cover, 465	
cloud physics etc. could play larger roles in the precipitation bias. 466	

5.2 Forecast	Skill	467	



	468	
Fig	13Monthly	mean	2m	air	temperature	anomaly	correlation	for	seasonal	forecast	and	observations	(MERRA-2)	469	



	470	
Fig	14Monthly	mean	precipitation	anomaly	correlation	for	seasonal	forecast	and	observations	(MERRA-2)	471	

Seasonal skills of T2M (Fig 13) and precipitation (Fig 14) are calculated as anomaly correlations between GEOS-5 472	
forecast and observations. GEOS-5 performs well for T2M  for the first lead month for all seasons, especially over 473	
the tropical oceans. Although the T2M skills over the tropical oceans remains high even after six months, the skills 474	
over land diminish quickly after the first lead month. Precipitation skills are generally lower than those of T2M, and 475	
there is hardly any skill after the first month for the extra tropics. However, over the East Pacific Ocean, where 476	
ENSO has a dominant influence on precipitation, the anomaly correlation remains high until the sixth lead month. 477	

5.2.1 Regional	Average	Skills	and	Case	Studies	478	
For the discussion in this section we consider special regions of particular socio-economic interest: the Amazon 479	
basin bounded by 80oW-50oW, 20oS-10oN, the Great Plain between 30oN-50oN, 110oW-100oW and Southern India 480	
between 10oN-15oN, 77oE-80oE.These areas are shown by pink rectangles in Fig 1 and labeled Amazon, GP and SI 481	
respectively. 482	
 483	



 484	
Fig	 15The	anomaly	 correlation	 for	 T2M	 (left)	 and	precipitation	 (right)	 between	 the	 forecast	 and	MERRA-2	 for	Amazon	River	485	
basin	 (top),	 Great	 Plain	 (middle)	 and	 Southern	 India	 (bottom)	 regions.	 	 Target	 month	 (x-axis)	 represents	 the	 date	 of	 the	486	
forecast,	 and	 the	 lead	month	 (y-axis)	 represents	 how	 long	 that	 forecast	was	 in	months,	 i.e.	 target	month	May	with	 lead	 4	487	
means	May	forecast	initialized	in	February	488	

 489	
A closer look (Fig 15, top row) at the broad region encompassing the Amazon River basin reveals a good overall 490	
skill in terms of anomaly correlation for both T2M and precipitation throughout the seasonal forecast. For the 491	
initialization months Jan-May, it stays above 0.4 up to lead month 9 and for Jun-Jul it starts above 0.6 for the first 492	
month and drops below 0.4 only after month 6. 493	
Seasonal forecasts serve as an important prediction tool for extreme events. At the current stage, there are 494	
uncertainties and difficulties in seasonal forecasts to accurately capture certain events. However, it is intriguing to 495	
see how GOES-5 performs in various extreme events. Two examples of such extreme events will be discussed next: 496	
drought over the Great Plains in 2012 and flood over the southern India coast in 2015.Figure 15 (middle and bottom 497	
panels)shows the T2M and precipitation anomaly correlation skill in these regions. One can see that there is little 498	
correlation between the observations and the predicted precipitation, yet the strong signal during the extreme events 499	
may give an opportunity for the forecast to capture its characteristics.	500	



	501	
Fig	16Case	studies	of	the	drought	over	the	Great	Plains	in	2012	and	the	flood	over	the	Southern	India	coast	in	2015.	One	to	four	502	
month	lead	forecasts	of	T2M	and	precipitation	are	plotted	against	the	observations	(MERRA-2).	For	the	Great	Palin	the	target	503	
month	is	July	2012,	for	the	South	India	region	the	target	month	is	November	2015,		The	anomalies	are	standardized	using	the	504	
corresponding	standard	deviation	505	

In the scatter plots in Fig16, one to four month lead forecasts of T2M and precipitation are plotted against the 506	
observations for the two events. The anomalies are standardized using the corresponding standard deviation. In the 507	
case of the Great Plain drought, GEOS-5 underestimates the deficit in both temperature and precipitation for all lead 508	
months. The underestimations are most obvious in the spring initialized forecasts and gradually decrease closer to 509	
summer. By May and June, GEOS-5 clearly predicts hotter and drier conditions for that summer, although the 510	
magnitude of the drought is less than in observations. The Great Plain is a region where the local water cycle is 511	
sensitive to the land surface representations and therefore is sensitive to land initializations. This characteristic of the 512	
region is also presented in this scatter plot. For the case of the southern India flood, GEOS-5 shows a much larger 513	
model spread for every initialization month. However, the large model spread highlights the low predictability of the 514	
seasonal forecast. The southern India flood is highly related to the location and strength of the Indian winter 515	
monsoon. The winter monsoon predictability therefore highly restrains the performance of the GEOS-5 seasonal 516	
forecast for floods. 517	

6 Sea	Ice	Outlook	518	
Seasonal forecasting systems focus on the ability of coupled atmosphere/ocean models to predict variability in the 519	
tropical Pacific Ocean and it’s associated higher latitude teleconnections (Kirtman et al. 2014). For middle and high 520	
latitudes, predictability derived from local oceanic sources has been thought to be limited (e.g., Barsugli and Battisti 521	
1998). But Arctic sea-ice cover has a decorrelation time scale of up to 5 months (Blanchard-Wrigglesworth et al. 522	
2011). Moreover, model experiments have indicated sea-ice predictability on seasonal time scales and longer, with 523	
indications of signal re-emergence beyond one year (Holland et al. 2010; Tietsche et al. 2014; Guemas et al. 2014). 524	
The prospect of a predictability reservoir has received considerable interest (Richter-Mengeet al. 2012; Stroeve et al. 525	
2014; Hamilton and Stroeve 2016). Potentially, seasonal forecasts of sea ice have utility for a variety of human 526	
endeavors including commerce, mineral exploration, and indigenous activities (Stroeve et al. 2015). Arctic sea-ice 527	
extent is also considered a climate variable. Mechanisms controlling its variability and trend are the subject of 528	
extensive observational and modeling studies (e.g., Perovich and Richter-Menge 2009; Vaughan et al. 2013). The 529	
presence of floating ice on the ocean radically alters surface properties; it has immediate influence on the exchange 530	
of energy and moisture between the ocean and the overlying atmosphere. Model experiments have demonstrated the 531	
impact of ice cover on regional Arctic climate, including air temperature and precipitation (Deser et al. 2010; 532	
Alexander et al. 2004), and studies have also suggested an influence on large-scale conditions extending beyond the 533	
immediate Arctic Basin (Thomas et al. 2014). In 2008, a challenge was formulated for comparing and evaluating 534	
experimental seasonal predictions of the September Arctic sea-ice extent (ARCUS, 2008), which became known as 535	
the Sea Ice Outlook. Many of the seasonal forecasting systems involved with NMME have participated, including 536	
the GMAO. Results have been mixed. Assessments have shown that predictions have reduced skill in years where 537	
the observed ice cover departs significantly from the long-term trend (Hamilton and Stroeve 2016). Subsequent 538	
evaluation of models participating in the Sea Ice Outlook has shown that forecasts have difficulty surpassing the 539	
skill of damped persistence, and difficulty predicting each other (Blanchard-Wrigglesworth et al. 2015). 540	



Forecasts submitted to the Sea Ice Outlook were composed of the ensemble members initialized at every five days 541	
of the prior month, along with ten members initialized at the beginning of the month. Unlike the ENSO forecasts and 542	
the ensemble members submitted to NMME, the sea ice forecasts made use of three experimental members, which 543	
were produced in hindcast mode beginning in 1993.These experimental members featured the inclusion of altimeter 544	
data, which was obtained from the Archiving, Validation and Interpretation of Satellite Oceanographic data project 545	
(AVISO; http://www.aviso.altimetry.fr/)and used in the ocean assimilation.	546	

	547	
Fig	 17Comparison	of	 forecast	 September	Arctic	 ice	extent	error	 from	submitted	 June	Sea	 Ice	Outlook	models	 for	 the	period	548	
2014-2016.	Yellow	dashed	 line	 indicates	 the	average	error	over	 the	 three	years.	 	 Error	 is	 computed	as	 the	difference	of	 the	549	
forecast	value	minus	the	extent	from	passive	microwave	data	(Cavalieri	et	al.	1996)	550	



	551	
Fig	18September	2014	forecast	and	the	observed	spatial	pattern	of	Arctic	sea	ice	552	

As shown in Fig 17, the GMAO system has performed well in comparison to other models over the period in which 553	
it has participated in the Sea Ice Outlook. For the previous three Outlooks, the average extent error is 0.32±0.22 554	
×106 km2 for the GMAO system as compared to 0.57±0.42×106 km2 for the average of all dynamical predictions. 555	
The uncertainty denotes the standard deviation of the forecast errors.Fig18also indicates that the spatial patterns for 556	
the September 2014 forecast were similar to the observed pattern. Over the hindcast period of 1998 to 2015, the June 557	
forecast explains 49 percent of the observed September ice extent variance, which may be considered of marginal 558	
skill. But this belies several critical issues with the forecast system, which are largely associated with initial 559	
conditions. As previously noted, the MERRA atmospheric reanalysis is used in the ocean assimilation. Cullather and 560	
Bosilovich (2012) found near-surface air temperatures in MERRA are as much as 10°C too warm in the late Arctic 561	
spring, owing to an erroneously low, fixed sea-ice albedo used in the uncoupled atmospheric reanalysis. The surface 562	
temperature bias and its effects on the GEOS-iODAS oceanic temperatures led to an anomalous reduction in 563	
forecast ice cover initialized during early summer months.Fig20indicates the increase in forecast error in summer 564	
months, such that forecast skill actually becomes reduced with decreasing lead time. This inhibits contributions to 565	
the Sea Ice Outlook for one- and two-month lead times to the September Arctic ice minimum. The June Outlook 566	
contributions are based on the prior month’s initialization. Analysis of hindcasts also finds low ice cover for spring 567	
forecasts initialized during the first ODAS data stream covering the period until 1993, as shown in Fig 19.Low ice 568	
volume associated with this stream and the interaction with the erroneously warm atmospheric forcing in the 569	
analysis results in poor ice forecasts over the time period. Hindcast skill improves in the later GEOS-iODAS stream 570	
and with the introduction of altimetry-based forecast ensemble members after 1993; as seen in Fig19, variability in 571	
the ensemble mean forecast is comparable to observed values after 1998. The period from 1998 to the present is 572	
used for a simple bias correction in the forecast to account for differences with the NSIDC Sea Ice Outlook. This is a 573	
common practice among Sea Ice Outlook participants. Over the full period, forecast ice cover for the Southern 574	
Ocean is patchy and not comparable to observation. 575	



	576	
Fig	19September	mean	sea	ice	extent	from	NSIDC	Sea	Ice	Index	(solid	black	line;	Fetterer	et	al.	2016),	and	from	ensemble	577	
members	of	the	June	forecast	(grey	lines).	The	ensemble	mean	is	indicated	with	a	black	dashed	line,	and	a	bias-correction	is	578	
indicated	with	a	dotted	line,	in	106	km2	579	

	580	
Fig	20September	sea	ice	extent	from	each	ensemble	member	minus	the	NSIDC	Sea	Ice	Index	observed	value,	plotted	based	on	581	
the	initialization	date.	Colors	indicate	the	year	of	the	forecast	582	

The lessons learned from this initial seasonal forecasting system exercise are useful in the construction of new 583	
forecast systems. First, the contrast in the competitiveness of the system shown in Figures 17-18with the difficulties 584	
indicated in Figures 19-20suggest the continued experimental nature of sea-ice forecasts on these time scales, but 585	



also that some significant improvement is relatively straightforward – for example, with improved atmospheric 586	
temperature forcing of the ocean analysis in the melt season such as in MERRA-2 (Bosilovich et al. 2016).The 587	
utility of hindcasts for the general characterization of the sea-ice forecast system suggests that the anomaly 588	
forecasting approach of NMME is also advantageous for the Arctic. But the simple bias correction approach that has 589	
been heretofore used is likely problematic. Bias correction of the hemisphere-summed ice extent is a means of 590	
addressing an inadequate representation of seasonality in the model, but it is mostly used here to address the 591	
mismatch of the land-sea mask between various models and observing system grids (see for example, Blanchard-592	
Wrigglesworth et al. 2016).A better methodology for sea-ice intercomparison between models and observations is 593	
required. The issues shown here emphasize the role of initial climate conditions for improved forecasts. This 594	
includes an investigation for improving the representation of sea-ice characteristics in the analysis state. 595	

7 Conclusions	596	
In this study we provide the details of the GEOS-5 seasonal forecast system setup, which is used in particular to 597	
provide monthly contributions to the NMME project. The SST, T2M, precipitation and sea ice extent skills are 598	
documented for the comparison with other systems and to track the differences, hopefully, improvements, with the 599	
future system currently under development. Notable problems in the current system are the large SST drift  in the 600	
northern Atlantic Ocean (strongest for the forecasts initialized in winter and spring), in the equatorial Pacific Ocean 601	
(strongest for the forecasts initialized in winter and spring), in the northern Pacific Ocean (for the forecasts 602	
initialized in  late fall and winter) and in the Southern Ocean (for the forecasts initialized in austral winter).Anomaly 603	
correlation SST skill is poor in the western Pacific Ocean (Niño 4 index) relative to the central and eastern 604	
equatorial regions (Niño 3 and Niño 3.4 indices).This is related to the overextension of the warm water anomaly to 605	
the west during the El Niño events. Ham et al (2014b) attributes this to the weak thermal damping and the erroneous 606	
zonal advective feedback as a response of the wind-driven current to the wind forcing. The strong ocean sensitivity 607	
to the wind forcing may be mitigated in the future by coupling the ocean with the new improved atmospheric 608	
analysis (MERRA-2), in which the surface winds are significantly improved compared to MERRA (Bosilovich et al, 609	
2016), in particular, over the western equatorial Pacific Ocean. 610	
The largest (negative) bias for T2M is over the winter Arctic Ocean related to the fact that GEOS-5 underestimates 611	
the sea ice temperature in winter. The largest positive T2M bias occurs during the northern hemisphere summer over 612	
land, especially in Asia and the west coast of North America.T2M is not significantly biased over the tropical 613	
oceans. The largest precipitation bias is found in the summer over land in the northern hemisphere, likely related to 614	
the uncertainty in model parameterization of vegetation cover, cloud physics etc. Anomaly correlation T2M skill is 615	
high for at least 6 lead months for all seasons over the tropical oceans, but drops quickly (after 1 month) over land. 616	
Significant precipitation skills in terms of anomaly correlation are found only over the equatorial eastern Pacific 617	
Ocean, where ENSO has a dominant influence on precipitation. Everywhere else the anomaly correlation drops to 618	
near zero after the first month of the forecast. 619	
The experimental sea ice forecast provides a benchmark for the future system evaluation. The current GEOS-5 620	
system is on par with other comparable models based on the 3 year comparison within the Sea Ice outlook project. 621	
Yet there are known shortcomings in the sea ice initialization and ocean and atmospheric feedbacks. In addition to 622	
providing better forcing to the ocean model via MERRA-2 analysis, the sea ice forecast has a potential to benefit 623	
from assimilating new types of observations during the ocean and sea ice initialization procedure, such as sea 624	
surface height and ice thickness. 625	
The GEOS-5 seasonal forecast system has been in service since early 2012.Since its inception, new versions of the 626	
models have become available, and the new ensemble ocean and sea ice assimilation system that is capable of 627	
processing new data types has been put in place. As the next system is being developed, this paper will be among 628	
those providing reference for evaluating its performance. 629	
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NSIDC  National Snow and Ice Data Center 874	
NOAA  National Oceanic and Atmospheric Administration 875	
OI  Optimal interpolation 876	
OOPC  Ocean Observations Panel for Climate 877	
PIRATA Prediction and Research Moored Array in the Atlantic program 878	
RAMA Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction 879	
SAFE  Spatial approximation of forecast errors 880	
SETIO  Southeastern Tropical Indian Ocean SST Index 881	
SMMR  Scanning Multi-channel Microwave Radiometer 882	
SSM/I  Special Scanning Microwave Imager 883	
SSMIS  Special Scanning Microwave Imager/Sounder 884	
SST  Sea surface temperature 885	
T2M  2-m air temperature 886	
TA  Tropical Atlantic index 887	
TAO/TRITON Tropical Atmosphere Ocean program Triangle Trans-Ocean Buoy Network 888	
TASI  Tropical Atlantic SST Index 889	
WTIO  Western Tropical Indian Ocean SST Index 890	
XBT  eXpendable Bathythermographs 891	


